

LEARNING TO ACT WITH ROBUSTNESS

Reazul Hasan Russel

University of New Hampshire

Committee members:

Momotaz Begum Mouhacine Benosman Ernst Linder Marek Petrik (Advisor) Wheeler Ruml

Outline

- 1 Basics of RL
- 2 Motivation and Outline
- 3 Robust MDPs
- 4 Contributions
 - Weighted Set
 - Near-optimal Set
 - RCMDPs
 - RASR
- 5 Conclusion

Reinforcement Learning

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Near-optimal Set RCMDPs RASR

Conclusion

References

■ Goal: select actions to maximize total future rewards [29].

Properties:

- No supervisor or labeled data
- Feedback is delayed, not instant
- Subsequent data depends on agent's action

Sequential Decision Making

Markov Decision Process (MDP)

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Se RCMDPs RASR

Conclusion

References

Definition

A Markov Decision Process is a tuple $\langle \mathcal{S}, \mathcal{A}, p, r \rangle$

- A finite set of states ${\cal S}$ A transition model p(s'|s,a)
- A finite set of actions A A reward function r(s, a)

Markov Decision Process (MDP)

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Near-optimal Set RCMDPs RASR

Conclusion

References

Definition

A Markov Decision Process is a tuple $\langle \mathcal{S}, \mathcal{A}, p, r \rangle$

- A finite set of states ${\cal S}$ A transition model p(s'|s,a)
- A finite set of actions A A reward function r(s, a)

State: Each cell

Action: Up, Down, Left, Right

Objective: Maximize γ -discounted return by finding policy $\pi \in \Pi$ [25]:

$$\max_{\pi \in \Pi} \mathbb{E}_s^{\pi} \left[\sum_{t=0}^{\infty} \gamma^t \, r(S_t, \pi(S_t)) \right]$$

Value Function

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set
Near-optimal Set
RCMDPs
RASR

Conclusion

References

Value function: v maps $states \rightarrow expected return$

Return = $p_0^T v$, where p_0 initial state distribution

Optimal Solution

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Set RCMDPs

Conclusion

References

Policy: π maps states \rightarrow actions

Optimal Solution: $\pi^* \in \arg \max_{\pi} \operatorname{return}(\pi)$

Applications of RL

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Se RCMDPs RASR

Conclusion

References

Simulated Problems

Cartpole

Atari: Breakout

Cartpole: A classic control problem [5]

- Deterministic dynamics
- Fast and precise simulators
- Failure is cheap and recoverable
- No serious safety constraint

Applications of RL

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Set RCMDPs

Conclusion

References

Practical Problems

Precision Medicine

Agriculture: A challenging RL problem

- Stochastic environment, depends on many factors
- No simulator, must learn from historical data
- Delayed reward, one episode = one year
- Crop failure is expensive
- Needs to satisfy safety constraints

My Approach

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set
Near-optimal Set
RCMDPs

Conclusion

References

■ Batch learning setup because no reliable simulator available.

Logged dataset $\mathcal{D} = (s_0, a_0, r_0, \dots, s_{t-1}, a_{t-1}, r_{t-1})$

My Approach

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Set RCMDPs

Conclusion

References

■ Batch learning setup because no reliable simulator available.

Logged dataset
$$\mathcal{D} = (s_0, a_0, r_0, \dots, s_{t-1}, a_{t-1}, r_{t-1})$$

- How to compute solution and how to evaluate?
- 1 Learn plausible models consistent with \mathcal{D}
- 2 Compute *robust* solution

max min return(policy, model)

A Toy Example

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Near-optimal Set RCMDPs RASR

Conclusion

References

A small MDP with:

- States $S = \{s_1, s_2, s_3\}$
- Action $A = \{a_1\}$
- Transitions labeled on edges

A Toy Example

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Conclusion

References

A small MDP with:

- States $S = \{s_1, s_2, s_3\}$
- Action $A = \{a_1\}$
- Transitions labeled on edges

Transition $p(\cdot|s_1, a_1)$

Transition $p(\cdot|s_1, a_1)$ projected onto simplex

Robust MDPs

Basics of RL

Motivation and

Robust MDPs

Contributions

Weighted Set Near-optimal Set

RASR

Conclusion

References

Definition

A robust Markov Decision Process is a tuple $\langle \mathcal{S}, \mathcal{A}, p, r \rangle$

- A finite set of states S Transition $p(s'|s,a) \sim \mathcal{P}_{s,a}$
- A finite set of actions \mathcal{A} A reward function r(s,a)
- Ambiguity Set: $\mathcal{P} = \|\bar{p}_{s,a} p\|_1 \le \psi_{s,a}$
- **Objective:** Maximize γ -discounted worst-case return [32]:

$$\max_{\pi \in \Pi} \min_{p \in \mathcal{P}} \operatorname{return}(\pi, p)$$

State of The Art in RMDPs

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set
Near-optimal Set
RCMDPs
RASR

Conclusion

References

RMDPs:

- *Robust* formulation of discrete dynamic programming.
- Solve RMDPs tractably using VI, PI [lyengar [18], Nilim et al. [23]].

State of The Art in RMDPs

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Se RCMDPs RASR

Conclusion

References

RMDPs:

- Robust formulation of discrete dynamic programming.
- Solve RMDPs tractably using VI, PI [lyengar [18], Nilim et al. [23]].

Ambiguity Set Construction:

- KL-divergence with MLE or MAP [Nilim and El Ghaoui, 2005 [23]]
 - Disadvantage: No guarantee
- Second order approx. without fixed set [Delage and Mannor, 2010 [9]]
 - Disadvantage: No guarantee
- Confidence region around MLE with prior [Wiesemann et. al. 2013 [32]]
 - Disadvantage: Not optimized, conservative results

Ambiguity Set as Bayesian Credible Region

Basics of RL

Motivation and

Robust MDPs

Contributions

Weighted Set Near-optimal Set RCMDPs RASR

Conclusion

References

■ Dirichlet prior: $\alpha = (1, 1, 1)$

■ Dataset: $\mathcal{D} = s_1 \rightarrow a_1 \rightarrow [3 \times s_1, 2 \times s_2, 5 \times s_3]$

■ Posterior: $\alpha = (4, 3, 6)$

May use MCMC methods for posterior sampling

Samples from posterior

Ambiguity Set as Bayesian Credible Region

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Set RCMDPs

Conclusion

References

Bayesian Ambiguity set: find minimum ψ to cover $(1 - \delta) * N$ samples around nominal point [26].

With $\delta = 0.1$ and N = 200, above ambiguity set covers at least 0.9 * 200 = 180 points around nominal point.

Robust Solution with BCR

Basics of RL

Motivation and

Robust MDPs

Contributions

Weighted Set Near-optimal Set RCMDPs

Conclusion

References

With ambiguity set ${\mathcal P}$ and value function being v=[0,0,1]

Nominal Value

$$\bar{v}(\bar{s}_1) = \bar{p}^T v = 0.48$$
 with NO guarantee

Robust Value

$$\hat{v}(s_1) = \min_{p \in \mathcal{P}} p^{\mathsf{T}} v = 0.2$$

with 90% confidence level

List of Contributions

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set
Near-optimal Se

Conclusion

References

- **Weighted Set for RMDPs**: Optimize shape of ambiguity sets with weights *for better high confidence guarantees*.
- Near-optimal Set for RMDPs: Construct near-optimal sets from possible value functions for better high confidence guarantees.
- **Robust Constrained MDPs (RCMDPs)**: Propose robust constrained MDP, optimize *for the worst-case* constraint satisfaction.
- 4 Risk-Averse Soft-Robust (RASR) Framework: Develop risk-averse soft-robust framework to simultaneously handle model and transition uncertainties.

Weighted Set

Basics of RL

Motivation and Outline

Robust MDPs

Contributions
Weighted Set

Near-optimal Set

Conclusion

References

Weighted Ambiguity Sets for RMDPs

Weighted Set: Intuition

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Set RCMDPs

Conclusion

References

Motivation: Reshape by reducing span of the set.

Weighted set:
$$\mathcal{P}_{s,a} = \left\{ oldsymbol{p} \in \Delta^{\mathcal{S}} : \|oldsymbol{p} - ar{oldsymbol{p}}_{s,a}\|_{1,\mathbf{w}} \leq \psi_{s,a}
ight\}$$

Guaranteed return 0.2

Guaranteed return 0.25

Weighted Set: Approach

Basics of RL

Motivation and

Robust MDPs

Contributions

Weighted Set

Near-optimal So RCMDPs RASR

Conclusion

D (

Steps to construct weighted set for $\lambda \in \mathbb{R}$ and $\mathbf{z} \in \mathbb{R}^{S}$:

1 Maximize lower bound:

$$\max_{\mathbf{w} \in \mathbb{R}_{++}^{\mathcal{S}}} \left\{ \underbrace{\bar{p}^\mathsf{T} z - \psi \|z - \bar{\lambda} \mathbf{1}\|_{\infty, \frac{1}{\mathbf{w}}}}_{\text{lower bound of robust value}} : \sum_{i=1}^{\mathcal{S}} \mathbf{w}_i^2 = 1 \right\}$$

- 2 Optimize weights: $w_i^{\star} \leftarrow \frac{|z_i \bar{\lambda}|}{\sqrt{\sum_{j=1}^{S} |z_j \bar{\lambda}|}}, \, \forall i \in \mathcal{S}$

Theorem (Weighted Hoeffding bound)

With weights $w \in \mathbb{R}^{S}_{++}$ sorted in a non-increasing order:

$$\mathbb{P}\left[\|\bar{p}_{s,a} - p_{s,a}^{\star}\|_{1,w} \ge \psi_{s,a}\right] \le 2\sum_{i=1}^{S-1} 2^{S-i} \exp\left(-\frac{\psi_{s,a}^{2} n_{s,a}}{2w_{i}^{2}}\right)$$

Weighted Set: Evaluation Domains

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set

RCMDPs RASR

Conclusion

References

- RiverSwim (RS): simple and standard benchmark problem with six states and two actions [28].
- Machine Replacement (MR): a small MDP problem modeling progressive deterioration of a mechanical device [9].
- Population Growth Model (PG): an exponential population growth model [19] with 50 states.
- Inventory Management (IM): a classic inventory management problem [34] with discrete inventory levels.
- Cart-Pole (CP): standard RL benchmark problem to balance a pole [6].

Weighted Set: Empirical Evaluation

Basics of RL

Motivation and

Robust MDPs

Contributions
Weighted Set

Near-optimal S RCMDPs

Conclusion

References

Normalized Frequentist performance loss

	RS	MR	PG	IM	СР
Standard	8.0	5.83	5.66	1.05	0.78
Optimized	0.53	1.05	5.55	0.99	0.77

Normalized Bayesian performance loss

	RS	MR	PG	IM	СР
Standard	0.6	1.56	5.24	0.97	0.77
Optimized	0.25	0.41	1.84	0.90	0.12

Loss is computed w.r.t. nominal model. confidence level is 95%. *Lower loss is better.*

R H Russel

Near-optimal Set

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Near-optimal Set RCMDPs

Conclusion

References

Near-optimal Bayesian Ambiguity Sets for RMDPs

Near-optimal Bayesian Set: Intuition

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set

Near-optimal Set

RCMDPs

Conclusion

References

Motivation: Half space defined by value function good enough.

Optimal set

Near-optimal set

Near-optimal set constructed for two possible value functions:

$$v_1 = (0,0,1)$$
 and $v_2 = (2,1,0)$.

Approach: Find smallest set intersecting all half-spaces corresponding to each value function.

Near-optimal Set: Approach

Basics of RL

Motivation and

Outille

Robust MDPs

Contributions
Weighted Set
Near-optimal Set

RCMDPs RASR

Conclusion

References

1 Optimal set for a given
$$\mathbf{v}$$
 and $\zeta = 1 - \delta/(SA)$: $\mathcal{K}_{s,a}(\mathbf{v}) = \left\{ p \in \Delta^S : p^\mathsf{T} \mathbf{v} \leq \mathsf{V@R}_{P^\star}^\zeta \left[(p_{s,a}^\star)^\mathsf{T} \mathbf{v} \right] \right\}$

2 Near-optimal set: with set \mathcal{V}

$$\begin{split} \mathcal{L}_{s,a}(\textcolor{red}{\mathcal{V}}) &= \{ p \in \Delta^{\mathcal{S}} \ : \ \|p - \theta_{s,a}(\textcolor{red}{\mathcal{V}})\|_1 \leq \psi_{s,a}(\textcolor{red}{\mathcal{V}}) \} \\ \psi_{s,a}(\textcolor{red}{\mathcal{V}}) &= \min_{p \in \Delta^{\mathcal{S}}} f(\textcolor{red}{p}), \quad \theta_{s,a}(\textcolor{red}{\mathcal{V}}) \in \operatorname{arg\,min}_{p \in \Delta^{\mathcal{S}}} f(\textcolor{red}{p}) \\ f(\textcolor{red}{p}) &= \max_{\textcolor{red}{\mathcal{V}} \in \textcolor{red}{\mathcal{V}}} \min_{q \in \mathcal{K}_{s,a}(\textcolor{red}{\mathcal{V}})} \|q - \textcolor{red}{p}\|_1 \end{split}$$

 ${f 3}$ iteratively expand ${\cal V}$ and approximate ${\cal L}.$

Theorem (Safe return estimates)

Policy $\hat{\pi}_k$ and value function \hat{v}_k computed by near-optimal set in iteration k. The return estimate $\tilde{\rho}(\hat{\pi}) = p_0^\mathsf{T} \hat{v}_k$ is safe: $\mathbb{P}_{P^*} \left[p_0^\mathsf{T} \hat{v}_k \leq p_0^\mathsf{T} v_{P^*}^{\hat{\pi}_k} \mid \mathcal{D} \right] \geq 1 - \delta.$

Near-optimal Set: Empirical Evaluation

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set

Near-optimal Set

RCMDPs

Conclusion

References

Single-state Bellman update with uninformative Dirichlet prior.

Violation rate

Regret w.r.t optimal policy. Estimates are computed with 95% confidence level. Lower regret is better.

Near-optimal Set: Empirical Evaluation

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set

Near-optimal Set

RCMDPs

Conclusion

References

Inventory management

Population model

Regret w.r.t optimal policy. Estimates are computed with 95% confidence level. *Lower regret is better.*

RCMDP

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Set

RCMDPs

RASR

Conclusion

References

Robust Constrained Markov Decision Processes

Constrained MDPs

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set

RCMDPs RASR

Conclusion

Reference

Definition

Defined as a tuple $\langle \mathcal{S}, \mathcal{A}, p, \{r_0, r_1, \dots r_n\}, \{\beta_1, \dots, \beta_n\} \rangle$

- ullet Same \mathcal{S} , \mathcal{A} and fixed transition kernel P like MDPs
- Contains multiple reward functions $\{r_0, r_1, \dots r_n\}$ and budgets $\{\beta_1, \dots, \beta_n\}$
- **Objective:** Maximize γ -discounted return satisfying constraints [2]:

$$\begin{aligned} & \max_{\pi \in \Pi} \mathbb{E}_s^{\pi} \left[\sum_{t=0}^{\infty} \gamma^t \; r_0 \Big(S_t, A_t \Big) \right] \\ & \text{s.t. } \mathbb{E}_s^{\pi} \left[\sum_{t=0}^{\infty} \gamma^t \; r_i \Big(S_t, A_t \Big) \right] \geq \beta_i, \; \text{for } i = 1, \dots, n \end{aligned}$$

State of the Art in CMDPs

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Set

RCMDPs RASR

Conclusion

References

Dates back to 1960s, first studied by *Derman and Klein* [11].

CMDP solution methods:

- Linear programming based solutions [11, 2],
- Lagrangian methods [16, 2]
- Surrogate based methods [1, 8],

State of the Art in CMDPs

Basics of RI

Motivation and

Robust MDPs

Contributions

RCMDPs

Conclusion

Dates back to 1960s, first studied by *Derman and Klein* [11].

CMDP solution methods:

- Linear programming based solutions [11, 2],
- Lagrangian methods [16, 2]
- Surrogate based methods [1, 8],

Sensitivity and robustness in CMDPs:

- Sensitivity analysis for LPs with small perturbations (Altman and Shwartz [3]),
- Robustness under small change in constraints (Alex and Shwartz [33]),
- Handling model misspecification in CMDPs (Mankowitz et al. [21])

Robust Constrained MDPs

Basics of RL

Motivation and

Robust MDPs

Contributions

Weighted Set

RCMDPs

RASR

Conclusion

References

RCMDP incorporates both constraints and robustness in objective

RCMDP: Approach

Basics of RI

Motivation and

Robust MDPs

Contributions

RCMDPs

Conclusion

References

Lagrange reformulation of RCMDP objective:

$$\mathfrak{L}(\pi_{\theta}, \lambda) = \sum_{\xi \in \Xi} p^{\pi_{\theta}}(\xi) \Big(g(\xi, r) + \lambda g(\xi, d) \Big) - \lambda \beta$$

- Find a saddle point $(\pi_{\theta}^*, \lambda^*)$ of \mathfrak{L} that satisfies: $\mathfrak{L}(\pi_{\theta}, \lambda^*) < \mathfrak{L}(\pi_{\theta}^*, \lambda^*) \leq \mathfrak{L}(\pi_{\theta}^*, \lambda), \forall \theta \in \mathbb{R}^k, \forall \lambda \in \mathbb{R}_+$
- Use the gradients of \mathfrak{L} to optimize the RCMDP objective [7]

Theorem (Gradient update formula)

Gradients of \mathfrak{L} with respect to θ and λ are:

Variables of
$$\mathcal{L}$$
 with respect to θ and λ are:
$$\nabla_{\theta} \mathfrak{L}(\pi_{\theta}, \lambda) = \sum_{\xi} \hat{p}^{\pi_{\theta}}(\xi) \Big(g(\xi, r) + \lambda g(\xi, d) \Big) \sum_{t=0}^{T-1} \frac{\nabla_{\theta} \pi_{\theta}(a_{t}|s_{t})}{\pi_{\theta}(a_{t}|s_{t})}$$

$$\nabla_{\lambda} \mathfrak{L}(\pi_{\theta}, \lambda) = \sum_{\xi} \hat{p}^{\pi_{\theta}}(\xi) g(\xi, d) - \beta$$

RCMDP: Empirical Evaluation

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Set

RCMDPs

Conclusion

References

■ Evaluating policy-gradient method on inventory management.

Return estimates with perturbed demand

Stock-out frequency

RCMDP: Empirical Evaluation

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Set

RCMDPs

Conclusion

References

■ Evaluating policy-gradient method on inventory management.

Return estimates with perturbed demand

 ${\sf Stock-out\ frequency}$

■ Evaluating actor-critic method on cart-pole.

Methods	Expected Return	Constraint Violation
AC	175.45 ± 2.99	2.3%
RAC	118.22 ± 6.07	1.1%
RCAC	123.26 ± 8.64	0.05%

RASR

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Set RCMDPs

RASR

Conclusion

References

Risk-Averse Soft-Robust Framework

Risk Measures

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Near-optimal S RCMDPs RASR

Conclusion

References

Risk: a loss, chance of occurring that loss and the significance of that loss to the person concerned.

- $VaR^{\alpha}(X)$: α -percentile of X.
- **CVaR** $^{\alpha}(X)$: Expectation of worst α -fraction of X.
- Entropic $^{\alpha}(\mathbf{X})$: $-\frac{1}{\alpha}\log\left(\mathbb{E}\left[\exp(-\alpha X)\right]\right)$

Risk-Averse (RA) and Soft-Robust (SR)

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set
Near-optimal Set
RCMDPs

RASR

Conclusion

Risk-Averse (RA) and Soft-Robust (SR)

Basics of RL

Motivation and

Robust MDPs

Contributions

Weighted Set
Near-optimal Set
RCMDPs

RASR

Conclusion

Risk-Averse Soft-Robust (RASR) Framework

Basics of RL

Motivation and

Robust MDPs

Contributions

Near-optimal S

RASR

Conclusion

References

Apply ERM on both model and transition uncertainties

■ In RASR, both model parameters \hat{P}_t and transitions to S_{t+1} are dynamically uncertain for each time step t.

$$\psi(\pi, f) = \rho_{\hat{P}, S, A}^{\alpha} \left[\sum_{t=0}^{T} \gamma^{t} \cdot r(S_{t}, A_{t}, S_{t+1}) : S_{0} \sim \rho_{0}, S_{t+1} \sim \hat{P}_{t}(s_{t}, a_{t}), A_{t} \sim \pi(S_{t}), \hat{P}_{t} \sim f \right] .$$

RASR: Approach

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Near-optimal Se RCMDPs

Conclusion

References

$$\hat{v}(s) \leftarrow \max_{\mathbf{a} \in \mathcal{A}} \rho^{\alpha}_{P^{\omega} \sim \hat{P}, s' \sim P^{\omega}(\cdot|s, \mathbf{a})} \left[r_{s, \mathbf{a}, s'} + \gamma \hat{v}(s') \right]$$

Actor-Critic: Parameterize policy and optimize with gradients.

$$J(\pi_{ heta}) = -rac{1}{lpha} \log \left(\mathbb{E}_{ au \sim p_{ heta}(au)} ig[\exp \left(-lpha R(au)
ight) ig]
ight)$$

Theorem (RASR gradient formula)

Gradient of $J(\pi_{\theta})$ with respect to the parameter θ is:

$$\nabla_{\theta} J(\pi_{\theta}) = \frac{-\sum_{\tau} p_{\theta}(\tau) \sum_{t=0}^{T} \frac{\nabla_{\theta} \pi_{\theta}(s_{t}|s_{t})}{\pi_{\theta}(s_{t}|s_{t})} \cdot \exp\left(-\alpha \sum_{t=0}^{T} r_{s_{t},s_{t}}\right)}{\alpha \sum_{\tau} p_{\theta}(\tau) \exp\left(-\alpha R(\tau)\right)}$$

RASR: Empirical Evaluation

Basics of RI

Motivation and

Robust MDPs

Contributions Near-optimal Set RCMDPs

RASR

Conclusion

References

Evaluation of RASR-VI policies

	RS	MR	IM
Nominal	16.54	-128.17	60.12
BCR	46.15	-127.53	74.40
RSVF	1.59	-129.03	65.44
RASR-CVaR	43.56	-127.83	69.09
RASR-Entropic	49.99	-120.89	83.50

Evaluation of RASR-AC policies on Cart-Pole problem

General	Soft-Robust	RASR-CVaR	RASR-Entropic
112.11	102.49	127.82	143.6

Return estimates under RASR entropic metric

Conclusion

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Set RCMDPs RASR

Conclusion

deferences

- Introduced basic RL framework and presented concepts regarding robust and risk-averse decision making.
- Presented four novel contributions in robust and risk-averse RL:
 - Developed methods to construct weighted ambiguity sets for RMDPs.
 - 2 Developed methods to construct near-optimal Bayesian ambiguity sets for RMDPs.
 - 3 Developed robust constrained MDP framework and derived methods for policy optimization in RCMDPs
 - 4 Developed RASR framework and derived methods for policy optimization in RASR setting

Publications

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal S RCMDPs RASR

Conclusion

References

Conferences:

- 1 Optimizing Percentile Criterion using Robust MDPs. Bahram Behzadian, Reazul Hasan Russel, Marek Petrik, Chin Pang Ho. Published at AISTATS 2021.
- 2 Beyond Confidence Interval: Tight Bayesian Ambiguity Sets for Robust MDPs. Reazul Hasan Russel, Marek Petrik. Published at NeurIPS 2019.
- 3 Value Directed Exploration in Multi-Armed Bandits with Structured Priors. Bence Cserna, Marek
 Petrik, Reazul Hasan Russel, Wheeler Ruml, Published at UAI 2017.
- 4 Robust Constrained MDP and Stability. Reazul Hasan Russel, Mouhacine Benosman, Jeroen Van Baar,
 Radu Corcodel, Under review at NeurlPS 2021
- 5 Risk-Averse Soft-Robust Reinforcement Learning. In preparation.

Publications

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set
Near-optimal Set
RCMDPs
RASR

Conclusion

References

Workshops:

RLDM 2018.

- 1 Optimizing Norm-bounded Weighted Ambiguity Sets for Robust MDPs. Reazul Hasan Russel*, Bahram Behzadian*, Marek Petrik. Presented at NeurIPS 2019 workshop on SRDM.
- 2 Tight Bayesian Ambiguity Sets for Robust MDPs. Reazul Hasan Russel, Marek Petrik. Presented at NeurIPS Workshop on Probabilistic Reinforcement Learning and Structured Control, 2018.
- Robust Exploration with Tight Bayesian Plausibility Sets. Reazul H Russel, Tianyi Gu, Marek Petrik.
- 4 Robust Constrained-MDPs: Soft-Constrained Robust Policy Optimization under Model Uncertainty.
- Reazul Hasan Russel, Mouhacine Benosman, Jeroen Van Baar. NeurIPS workshop on The Challenges of Real World Reinforcement Learning 2020

Bibliography I

Basics of RI

Motivation and

Robust MDPs

Contributions

Conclusion

- [1] J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained Policy Optimization. International Conference on Machine Learning, 2017.
- E. Altman. Constrained Markov Decision Processes. 2004.
- E. Altman and A. Shwartz. Sensitivity of constrained Markov decision processes. Annals of Operations Research, 1991.
- [4] P. Auer, T. Jaksch, and R. Ortner. Near-optimal regret bounds for reinforcement learning. Journal of Machine Learning Research, 2010.
- [5] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai gym, 2016.
- [6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. OpenAl Gym. Technical report, 2016.

Bibliography II

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Se

Conclusion

- [7] Y. Chow and M. Ghavamzadeh. Algorithms for CVaR optimization in MDPs. Advances in Neural Information Processing Systems, 2014.
- [8] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y. Tassa. Safe exploration in continuous action spaces, 2018.
- [9] E. Delage and S. Mannor. Percentile Optimization for Markov Decision Processes with Parameter Uncertainty. *Operations Research*, 2010.
- [10] E. Derman, D. J. Mankowitz, T. A. Mann, and S. Mannor. Soft-robust actor-critic policy-gradient. *Conference on Uncertainty in Artificial Intelligence (UAI)*, 2018.
- [11] M. Derman, Cyrus and Klein. Some Remarks on Finite Horizon Markovian Decision Models. 1965.

Bibliography III

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Near-optimal Se

Conclusion

- [12] R. Dimitrova, J. Fu, and U. Topcu. Robust optimal policies for Markov decision processes with safety-threshold constraints. 2016 IEEE 55th Conference on Decision and Control, CDC 2016, 2016.
- [13] H. Eriksson and D. Christos. Epistemic Risk-Sensitive Reinforcement Learning. 2019.
- [14] H. Eriksson and C. Dimitrakakis. Epistemic risk-sensitive reinforcement learning. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 2020.
- [15] Y. Fei, Z. Yang, Y. Chen, Z. Wang, and Q. Xie. Risk-sensitive reinforcement learning: Near-optimal risk-sample tradeoff in regret. *arXiv*, 2020.
- [16] P. Geibel and F. Wysotzki. Risk-sensitive reinforcement learning applied to control under constraints. *Journal of Artificial Intelligence Research*, 2005.

Bibliography IV

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set
Near-optimal Se

Conclusion

- [17] T. Hiraoka, T. Imagawa, T. Mori, T. Onishi, and Y. Tsuruoka. Learning Robust Options by Conditional Value at Risk Optimization. *Neural Information Processing Systems*, 2019.
- [18] G. N. Iyengar. Robust dynamic programming. *Mathematics of Operations Research*, 2005.
- [19] M. Kery and M. Schaub. Bayesian Population Analysis Using WinBUGS 2012
- [20] E. A. Lobo, M. Ghavamzadeh, and M. Petrik. Soft-Robust Algorithms for Batch Reinforcement Learning. *Arxiv*, 2021.
- [21] D. J. Mankowitz, N. Levine, R. Jeong, Y. Shi, J. Kay, A. Abdolmaleki, J. T. Springenberg, T. Mann, T. Hester, and M. Riedmiller. Robust Constrained Rinforcement Learning For Continuous Control With Model Misspecification. 2020.
- [22] D. Nass, B. Belousov, and J. Peters. Entropic Risk Measure in Policy Search. *Investment Management and Financial Innovations*, 2020.

Bibliography V

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set
Near-optimal Se
RCMDPs

Conclusion

- [23] A. Nilim and L. El Ghaoui. Robust control of Markov decision processes with uncertain transition matrices. *Operations Research*, 2005.
- [24] L. Prashanth and M. Ghavamzadeh. Variance-constrained Actor-Critic Algorithms for Discounted and Average Reward MDPs. Machine Learning Journal, 2016.
- [25] M. L. Puterman. Markov decision processes: Discrete stochastic dynamic programming. John Wiley & Sons, Inc., 2005.
- [26] R. H. Russel and M. Petrik. Beyond confidence regions: Tight Bayesian ambiguity sets for robust MDPs. Advances in Neural Information Processing Systems, 2019.
- [27] R. H. Russel and M. Petrik. Beyond Confidence Regions: Tight Bayesian Ambiguity Sets for Robust MDPs. *Advances in Neural Information Processing Systems*, 2019.

Bibliography VI

Basics of RL

Motivation and
Outline

Robust MDPs

Contributions

Near-optimal Se RCMDPs

Conclusion References

[28] A. L. Strehl and M. L. Littman. An analysis of model-based interval estimation for Markov decision processes. *Journal of Computer and System Sciences*, 74(8):1309–1331, 2008.

[29] R. S. Sutton and A. G. Barto. *Reinforcement learning: An introduction*. MIT press, 2018.

[30] A. Tamar, D. D. Castro, and S. Mannor. Temporal Difference Methods for the Variance of the Reward To Go. *International Conference on Machine Learning*, 2013.

[31] T. Weissman, E. Ordentlich, G. Seroussi, S. Verdu, and M. J. Weinberger. Inequalities for the L₋₁ deviation of the empirical distribution. 2003.

[32] W. Wiesemann, D. Kuhn, and B. Rustem. Robust Markov decision processes. *Mathematics of Operations Research*, 2013.

[33] A. Zadorojniy and A. Shwartz. Robustness of policies in constrained Markov decision processes. *IEEE Transactions on*

Automatic Control, 2006.
[34] P. H. Zipkin. Foundations of Inventory Management. 2000.

R H Russel

Supplementary Materials

Summary of the work to be done

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Set

RCMDPs RASR

Conclusion

- Soft-robust with entropic risk:
 - Theoretical understanding: time consistency of entropic risk measure for our formulation.
 - More empirical evaluation: run more experiments on bigger and complex domain. ✓
- Robust constrained MDP:
 - Exploring and understanding new ideas for further contribution
 - Theoretical understanding and empirical evaluation.

Robustness: Policy Evaluation

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Set RCMDPs

Conclusion

References

- True expected return: 0.4 * 100 + 0.6 * 0 = 40
- 0.4 * 100 + 0.6 * 0 = 40
- Nominal transition: [0.5, 0.5].

- Non-robust return: 0.5 * 100 + 0.5 * 0 = 50
- Ambiguity budget: $\psi = 0.4$
- Worst-case transition: 0.3, 0.7.
- Robust return: 0.3 * 100 + 0.7 * 0 = 30.

Non-robust evaluation: promises \$50, but delivers \$40. Robust evaluation: promises at least \$30, and delivers \$40.

Robustness: Policy Evaluation

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set
Near-optimal Set
RCMDPs

Conclusion

References

- True expected return: $a_1 = 40$, $a_2 = 45$
- $\mathcal{D} = \{s_1 \to a_1 \to [5 \times s_2, 5 \times s_3], s_1 \to a_2 \to [45 \times s_2, 55 \times s_3]\}$

a ₁	a ₂	
Nominal: [0.5, 0.5]	Nominal: [0.45, 0.55]	
Return: 50	Return: 45	Decision: a ₁
Robust Return: 40	Robust Return: 45	Decision: a ₂

Robustness makes it possible to pick the best action a_2

RASR: State of the Art in Risk and RL

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Set RCMDPs

Conclusion

D. (Uncerta	ainty Types	Ri	sk Measur	es
References Lobo et al. [20] Nass et al. [22] Fei et al. [15] Eriksson et al. [14] Hiraoka et al. [17]	RA	SR	Variance	CVaR	Entropic
Lobo et al. [20]	X	✓	Х	✓	Х
Nass et al. [22]	✓	X	X	X	✓
Fei et al. [15]	✓	X	X	X	✓
Eriksson et al. [14]	X	✓	X	1	✓
Hiraoka et al.[17]	X	✓	X	✓	X
Prashanth et al. [24]	✓	X	✓	X	X
Chow et al. [7]	✓	X	X	✓	X
Tamar et al.[30]	✓	X	X	✓	X
RASR	✓	✓	X	X	✓

RASR: Empirical Evaluation

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Set RCMDPs

Conclusion

Methods		RS	MR	IM
Nominal	Mean	221.90	-12.46	226.47
Nominai	RASR	16.54	-128.17	60.12
BCR	Mean	107.77	-15.68	208.73
вск	RASR	46.15	-127.53	74.40
RSVF	Mean	220.81	-14.14	216.54
KSVF	RASR	1.59	-129.03	65.44
DACD CV D	Mean	132.92	-14.08	216.52
RASR-CVaR	RASR	43.56	-127.83	69.09
DACD F	Mean	49.99	-24.11	118.54
RASR-Entropic	RASR	49.99	-120.89	83.50

Pest Control as MDP

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Near-optimal Set
RCMDPs

Conclusion

References

States: Pest population: [0, 50]

Actions:

- 0 No pesticide
- 1-4 Pesticides P1, P2, P3, P4 with increasing effectiveness

Transition probabilities: Pest population dynamics

Reward:

- Crop yield minus pest damage
- 2 Spraying cost: P4 more expensive than P1

Non-robust Solution

Basics of RL

Motivation and

Robust MDPs

Contributions

Weighted Set Near-optimal Set RCMDPs

Conclusion

Robust Solution

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Set RCMDPs

Conclusion

SA-Rectangular Ambiguity

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set
Near-optimal Se
RCMDPs
RASR

Conclusion

References

Nature is constrained for each state and action separately e.g. [23]

Sets are rectangles over s and a:

Frequentist Ambiguity Set

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set
Near-optimal Se
RCMDPs
RASR

Conclusion

References

For $\bar{p}_{s,a} = \mathbb{E}_{P^{\star}}[p^{\star}_{s,a} \mid \mathcal{D}]$ with prob. $1 - \delta$ (using Hoeffding's Ineq. see e.g. [31, 4, 26]):

$$\mathcal{P}_{s,a}^{H} = \left\{ p \in \Delta^{S} : \|p - \bar{p}_{s,a}\|_{1} \leq \sqrt{\frac{2}{n_{s,a}} \log \frac{SA2^{S}}{\delta}} \right\}$$

Few samples \longrightarrow large ambiguity set \longrightarrow Very conservative

Bayesian Ambiguity Set

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Near-optimal Set RCMDPs

Conclusion

References

Use posterior distribution to optimize for the *smallest* ambiguity set.

$$\mathcal{P}_{s,a}^B = \left\{ p \in \Delta^{\mathcal{S}} : \|p - \bar{p}_{s,a}\|_1 \leq \psi_{s,a}^B
ight\}, \quad \bar{p}_{s,a} = \mathbb{E}_{P^\star}[p_{s,a}^\star \mid \mathcal{D}].$$

Hoeffding (green) vs Bayesian(blue), uniform Dirichlet Prior, 3 states

Tighter than frequentist but require prior and omputationally demanding

Idea 1: Weighted Ambiguity Sets

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set
Near-optimal Set
RCMDPs
RASR

Conclusion

References

Optimize ambiguity sets with problem specific weights.

$$v = (0, 0, 1)$$
0.75
0.50
0.00 s4
0.00 0.25 0.50 0.75 1.00

Green: L_1 -norm bounded set:

$$\mathcal{P}_{s,a} = \left\{ oldsymbol{
ho} \in \Delta^{\mathcal{S}} : \|oldsymbol{
ho} - ar{oldsymbol{
ho}}_{s,a}\|_1 \leq \psi_{s,a}
ight\}$$

Orange: Weighted L_1 -norm bounded:

$$\mathcal{P}_{s, s} = \left\{ oldsymbol{
ho} \in \Delta^{\mathcal{S}} \; : \; \|oldsymbol{
ho} - ar{oldsymbol{
ho}}_{s, s}\|_{1, \mathsf{w}} \leq \psi_{s, s}
ight\}$$

Idea 1: Weighted Ambiguity Sets

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Set

RASR

Conclusion

References

Optimizing weights:

- **Step 1:** Estimate a value function \hat{v}
- **Step 2:** Lower bound the robust value:

$$\min_{\boldsymbol{p} \in \Delta^{\mathcal{S}}} \left\{ r_{\mathrm{s},a} + \gamma \, \boldsymbol{p}^{\mathsf{T}} \hat{\boldsymbol{v}} : \|\boldsymbol{p} - \bar{\boldsymbol{p}}\|_{1,\mathbf{w}} \leq \psi \right\}$$

■ **Step 3:** Compute weights w maximizing the lower bound:

$$\max_{\pmb{w} \in \mathbb{R}_{++}^{\mathcal{S}}} \left\{ \bar{\pmb{p}}^\mathsf{T} \pmb{z} - \psi \| \pmb{z} - \bar{\lambda} \pmb{1} \|_{\infty,\frac{1}{\pmb{w}}} \ : \ \sum_{i=1}^{\mathcal{S}} {\pmb{w}_i}^2 = 1 \right\}$$

■ **Step 4:** Use w to compute weighted sets.

Idea 1: Optimizing Weights

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Near-optimal Set RCMDPs

Conclusion References ■ Define $\mathbf{z} = r_{s,a}\mathbf{1} + \gamma \hat{\mathbf{v}}$ and $q(\mathbf{z})$ with L_{∞} norm for some $\mathbf{w} > 0$ as: $q(\mathbf{z}) = \min_{\mathbf{p} \in \Delta^S} \left\{ \mathbf{p}^{\mathsf{T}} \mathbf{z} : \|\mathbf{p} - \bar{\mathbf{p}}\|_{1,\mathbf{w}} \le \psi \right\}$.

Theorem

q(z) can be lower-bounded as follows:

$$q(oldsymbol{z}) \geq ar{oldsymbol{
ho}}^{\mathsf{T}} oldsymbol{z} - \psi \| oldsymbol{z} - \lambda oldsymbol{1}\|_{\infty, rac{1}{oldsymbol{w}}}$$

for any $\lambda \in \mathbb{R}$. Moreover, when $\boldsymbol{w} = \boldsymbol{1}$, the bound is tightest when $\lambda = (\max_i z_i + \min_i z_i)/2$ and the bound turns to $q(\boldsymbol{z}) \geq \bar{\boldsymbol{p}}^\mathsf{T} \boldsymbol{z} - \frac{\psi}{2} \|\boldsymbol{z}\|_s$ with $\|\cdot\|_s$ representing the *span semi-norm*.

• We choose \boldsymbol{w} that will maximize the lower bound on $q(\boldsymbol{z})$:

$$\max_{\boldsymbol{w} \in \mathbb{R}_{>0}^S} \left\{ \bar{\boldsymbol{p}}^\mathsf{T} \boldsymbol{z} - \psi \| \boldsymbol{z} - \bar{\lambda} \boldsymbol{1} \|_{\infty,\frac{1}{\boldsymbol{w}}} \ : \ \sum_{i=1}^S w_i^2 = 1 \right\}$$

LEARNING TO ACT WITH ROBUSTNESS

Idea 2: Near-optimal Bayesian Ambiguity Sets

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Near-optimal Se RCMDPs RASR

Conclusion

References

Value-function driven near-optimal ambiguity sets

Red: Optimal set for for a known value function v = [0, 0, 1]

Blue: Optimal set for all possible value functions.

Idea 2: Near-optimal Bayesian Ambiguity Sets

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set
Near-optimal Set
RCMDPs

Conclusion

References

Value-function driven near-optimal ambiguity sets

Red: Optimal set for for a known value function v = [0, 0, 1]

Blue: Optimal set for all possible value functions.

Near-optimal ambiguity sets constructed for two possible value functions: $v_1 = (0, 0, 1)$ and $v_2 = (2, 1, 0)$

Idea 2: Near-optimal Bayesian Ambiguity Sets

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Se RCMDPs

Conclusion

References

Near-optimal sets:

■ **Step 1:** Find the half-space for each value function:

$$\mathcal{K}_{s,a}(\textcolor{red}{v}) = \left\{ \textcolor{red}{p} \in \Delta^{S} \ : \ \textcolor{red}{p^{\mathsf{T}}}\textcolor{red}{v} \leq \mathsf{V@R}^{\zeta}_{p^{\star}} \left[(p^{\star}_{s,a})^{\mathsf{T}}\textcolor{red}{v} \right] \right\}$$

- Step 2: Find minimal set intersecting each half-space.
- **Step 3:** Compute robust solution and iterate.

Near-optimal Bayesian Ambiguity Sets

Basics of RI

Motivation and

Robust MDPs

Contributions

Conclusion

$$\mathcal{K}_{s,a}(\mathbf{v}) = \left\{ p \in \Delta^{S} \ : \ p^{T}\mathbf{v} \leq \mathsf{V@R}^{\zeta}_{P^{\star}} \left[(p^{\star}_{s,a})^{T}\mathbf{v} \right] \right\} \ ,$$

 Approximation of optimal ambiguity set for a set of possible value functions:

$$\mathcal{L}_{s,a}(\mathcal{V}) = \{ p \in \Delta^{S} : \|p - \theta_{s,a}(\mathcal{V})\|_{1} \leq \psi_{s,a}(\mathcal{V}) \},$$

$$\psi_{s,a}(\mathcal{V}) = \min_{p \in \Delta^{S}} f(p), \quad \theta_{s,a}(\mathcal{V}) \in \arg\min_{p \in \Delta^{S}} f(p),$$

$$f(p) = \max_{v \in \mathcal{V}} \min_{q \in \mathcal{K}_{s,a}(v)} \|q - p\|_{1}$$

$\mathsf{Theorem}$

Suppose that the algorithm terminates with a policy $\hat{\pi}_k$ and a value function \hat{v}_k in the iteration k. Then, the return estimate $\tilde{\rho}(\hat{\pi}) = p_0^T \hat{v}_k$ is safe: $\mathbb{P}_{P^*} \left[p_0^T \hat{v}_k \leq p_0^T v_{P^*}^{\hat{\pi}_k} \mid \mathcal{D} \right] \geq 1 - \delta$.

Soft-Robust Methods

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Set RCMDPs

Conclusion

Soft-Robust Methods

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set
Near-optimal Set
RCMDPs

Conclusion

References

Related Works:

- [10] proposed soft-robust policy-gradient and actor-critic methods constrained by a fixed ambiguity set.
- [13] propose entropic and CV@R risk constrained policy gradient in Bayesian setting.

Idea 3: Soft-Robustness with Entropic Risk

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Set RCMDPs

Conclusion

References

Objective:

$$\begin{split} & \max_{\theta} \mathbb{E}_{\mathcal{M}} \Big[\mathbb{E}_{\xi} \big[g^{\theta}(\xi) \big] \Big] \\ & \text{s.t. } - \frac{1}{\alpha} \log \Big(\mathbb{E}_{\mathcal{M}} \big[e^{-\alpha \mathbb{E}_{\xi} [g^{\theta}(\xi)]} \big] \Big) \geq \beta \end{split}$$

Idea 3: Soft-Robustness with Entropic Risk

Basics of RL

Motivation and

Robust MDPs

Contributions

Weighted Set Near-optimal Se RCMDPs

Conclusion

References

Objective:

$$\begin{split} & \max_{\theta} \mathbb{E}_{\mathcal{M}} \Big[\mathbb{E}_{\xi} \big[g^{\theta}(\xi) \big] \Big] \\ & \text{s.t. } - \frac{1}{\alpha} \log \Big(\mathbb{E}_{\mathcal{M}} \big[e^{-\alpha \mathbb{E}_{\xi} [g^{\theta}(\xi)]} \big] \Big) \geq \beta \end{split}$$

■ Derive gradient update rule:

$$\nabla_{\theta} L(\theta, \lambda) = \sum_{\mathcal{M}} P(\mathcal{M}) \sum_{\xi : P_{\theta, \mathcal{M}}(\xi) \neq 0} g(\xi) P_{\theta, \mathcal{M}}(\xi) \Big(1 - \frac{-\alpha}{2} \sum_{\xi : P_{\theta, \mathcal{M}}(\xi) \neq 0} g(\xi) \Big) \sum_{\xi : P_{\theta, \mathcal{M}}(\xi) \neq 0} \frac{1}{2} \nabla_{\theta} \pi_{\theta} (a_{k} | s_{k}) \Big)$$

$$\alpha \lambda e^{-\alpha \sum_{\xi: P_{\theta, \mathcal{M}}(\xi) \neq 0} P_{\theta, \mathcal{M}}(\xi) g(\xi)} \sum_{k=0}^{T-1} \frac{\nabla_{\theta} \pi_{\theta}(a_k | s_k)}{\pi_{\theta}(a_k | s_k)}$$

$$\nabla_{\lambda} L(\theta, \lambda) = \sum_{k, \ell} P(\mathcal{M}) e^{-\alpha \sum_{\xi : P_{\theta}(\xi) \neq 0} P_{\theta, \mathcal{M}}(\xi) g(\xi)} - e^{-\alpha \beta}$$

Idea 3: Empirical Evaluation

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set Near-optimal Set RCMDPs

Conclusion

- Asset 1: Standard normal.
- **Asset 2:** Normal with $\mu = 4$ and $\sigma = 6$.
- **Asset 3:** Pareto distribution with shape a = 1.5, scale m = 1 and pdf $p(x) = \frac{am^a}{x^{a+1}}$.

Convergence Analysis

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Near-optimal Se RCMDPs

Conclusion

References

Corollary

When $S_{\phi}(X) = \rho_{ent}^{\alpha}(X)$ for some $\alpha \in (0,1]$, then we have:

$$P(|\hat{
ho}_{ent}^{lpha}(X_1,\ldots,X_N) -
ho_{ent}^{lpha}(X)| \geq \varepsilon) \leq 2e^{-2lpha^2 \varepsilon^2 N}$$

Theorem

Under assumptions (A1) - (A7) stated in Appendix of the paper, the sequence of parameter updates of the policy gradient algorithm converges almost surely to a locally optimal policy θ^* as $k \to \infty$.

Theorem

Under assumptions (A1) - (A7) stated in Appendix of the paper, the sequence of parameter updates of actor-critic Algorishm converges almost surely to a locally optimal policy.

Robust Constrained MDP

Basics of RL

Motivation and Outline

Robust MDPs

Contributions

Weighted Set

RCMDF

Conclusion

References

Constrained MDPs: MDPs with multiple reward

functions [2].

Robust CMDPs: Incorporate robustness into CMDPs.

Related Works:

- [12] Proposes methods to find robust optimal policies with safety-threshold constraints.
- [21] Proposes methods to optimize policy robust to constrained model misspecification.

Idea 4: Robust Constrained Policy Optimization

Basics of RI

Motivation and

Robust MDPs

Contributions

Conclusion References

Objective:

$$\max_{\pi \in \Pi} \min_{p \in \mathcal{P}} \mathbb{E}_p \left[\sum_{t=0}^{\infty} \gamma^t c(s_t, a_t) \right]$$
s.t.
$$\min_{p \in \mathcal{P}} \mathbb{E}_p \left[\sum_{t=0}^{\infty} \gamma^t d(s_t, a_t) \right] \leq d_0$$

Formulate Lagrange:

$$\max_{\lambda \geq 0} \min_{ heta} \left(L(heta, \lambda) = \hat{v}^\pi_\mathcal{P}(s) + \lambda \Big(\hat{u}^\pi_\mathcal{P}(s) - d_0 \Big)
ight)$$

Derive gradient update rule:

$$abla_{ heta} L(heta, \lambda) = \sum_{\xi} \hat{p}^{ heta}(\xi) igg(g(\xi) + \lambda h(\xi)igg) \sum_{t=0}^{T-1} rac{
abla_{ heta} \pi_{ heta}(a_t|s_t)}{\pi_{ heta}(a_t|s_t)}$$

 $\nabla_{\lambda} L(\theta, \lambda) = \sum \hat{p}_{\mu}^{\theta}(\xi) h(\xi) - d_0$