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Reinforcement Learning

Goal: select actions to maximize
total future rewards [29].

Properties:
No supervisor or labeled data
Feedback is delayed, not instant
Subsequent data depends on
agent’s action Sequential Decision

Making
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Markov Decision Process (MDP)

Definition
A Markov Decision Process is a tuple 〈S,A, p, r〉
• A finite set of states S • A transition model p(s ′|s, a)
• A finite set of actions A • A reward function r(s, a)

State: Each cell
Action: Up, Down,

Left, Right

Objective: Maximize γ-discounted return by finding policy
π ∈ Π [25]:

max
π∈Π

Eπs

[ ∞∑
t=0

γt r
(

St , π(St)
)]
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Value Function

Value function: v maps states → expected return

Return = pT
0 v , where p0 initial state distribution
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Optimal Solution

Policy: π maps states → actions

Optimal Solution: π? ∈ arg maxπ return(π)
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Applications of RL

Simulated Problems

Cartpole Atari: Breakout

Cartpole: A classic control problem [5]
Deterministic dynamics
Fast and precise simulators
Failure is cheap and recoverable
No serious safety constraint
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Applications of RL

Practical Problems

Agriculture Precision Medicine

Agriculture: A challenging RL problem
Stochastic environment, depends on many factors
No simulator, must learn from historical data
Delayed reward, one episode = one year
Crop failure is expensive
Needs to satisfy safety constraints
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My Approach

Batch learning setup because no reliable simulator available.

Logged dataset D = (s0, a0, r0, . . . , st−1, at−1, rt−1)

How to compute solution and how to evaluate?

1 Learn plausible models
consistent with D

2 Compute robust solution

max
policy

min
model

return(policy ,model)
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A Toy Example

A small MDP with:
States S = {s1, s2, s3}
Action A = {a1}
Transitions labeled on edges

s1 a1

s2

s3

0.3
0.2

0.5

Transition p(·|s1, a1)
Transition p(·|s1, a1) projected

onto simplex
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A Toy Example

A small MDP with:
States S = {s1, s2, s3}
Action A = {a1}
Transitions labeled on edges

s1 a1

s2

s3

0.3
0.2

0.5

Transition p(·|s1, a1)

s1 s2

s3

(0.3, 0.2, 0.5)

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00

Transition p(·|s1, a1) projected
onto simplex
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Robust MDPs

Definition
A robust Markov Decision Process is a tuple 〈S,A, p, r〉
• A finite set of states S • Transition p(s ′|s, a) ∼ Ps,a

• A finite set of actions A • A reward function r(s, a)

Ambiguity Set: P = ‖p̄s,a − p‖1 ≤ ψs,a

Objective: Maximize γ-discounted worst-case return [32]:

max
π∈Π

min
p∈P

return(π, p)
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State of The Art in RMDPs

RMDPs:
Robust formulation of discrete dynamic programming.
Solve RMDPs tractably using VI, PI [ Iyengar [18], Nilim et al. [23]].

Ambiguity Set Construction:
KL-divergence with MLE or MAP [Nilim and El Ghaoui, 2005 [23]]

Disadvantage: No guarantee
Second order approx. without fixed set [Delage and Mannor, 2010 [9]]

Disadvantage: No guarantee
Confidence region around MLE with prior [Wiesemann et. al. 2013 [32]]

Disadvantage: Not optimized, conservative results
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Ambiguity Set as Bayesian Credible Region

Dirichlet prior: α = (1, 1, 1)
Dataset: D = s1 → a1 → [3× s1, 2× s2, 5× s3]
Posterior: α = (4, 3, 6)

May use MCMC methods for posterior sampling

s1 s2

s3

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00

Samples from posterior
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Ambiguity Set as Bayesian Credible Region

Bayesian Ambiguity set: find minimum ψ to cover
(1− δ) ∗ N samples around nominal point [26].

With δ = 0.1 and N = 200, above ambiguity set covers at
least 0.9 ∗ 200 = 180 points around nominal point.
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Robust Solution with BCR

With ambiguity set P and value function being v = [0, 0, 1]

Nominal Value
v̄(s1) = p̄Tv = 0.48
with NO guarantee

Robust Value
v̂(s1) = minp∈P pTv = 0.2
with 90% confidence level
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List of Contributions

1 Weighted Set for RMDPs: Optimize shape of ambiguity
sets with weights for better high confidence guarantees.

2 Near-optimal Set for RMDPs: Construct near-optimal
sets from possible value functions for better high confidence
guarantees.

3 Robust Constrained MDPs (RCMDPs): Propose robust
constrained MDP, optimize for the worst-case constraint
satisfaction.

4 Risk-Averse Soft-Robust (RASR) Framework: Develop
risk-averse soft-robust framework to simultaneously handle
model and transition uncertainties.
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Weighted Set

Weighted Ambiguity Sets for RMDPs
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Weighted Set: Intuition

Motivation: Reshape by reducing span of the set.

Weighted set: Ps,a =
{

ppp ∈ ∆S : ‖ppp − p̄pps,a‖1,w ≤ ψs,a
}

Unweighted Set

Guaranteed return 0.2

Weighted Set

Guaranteed return 0.25
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Weighted Set: Approach

Steps to construct weighted set for λ ∈ R and zzz ∈ RS :

1 Maximize lower bound:
maxw∈RS

++

{
p̄Tz − ψ‖z − λ̄111‖∞, 1

w︸ ︷︷ ︸
lower bound of robust value

:
∑S

i=1 w2
i = 1

}

2 Optimize weights: w?
i ←

|zi−λ̄|√∑S
j=1 |zj−λ̄|

, ∀i ∈ S

3 Optimize size: Minimal ψ with BCR or Hoeffding [27]

Theorem (Weighted Hoeffding bound)
With weights w ∈ RS

++ sorted in a non-increasing order:

P
[
‖p̄s,a − p?s,a‖1,w ≥ ψs,a

]
≤ 2

∑S−1
i=1 2S−i exp

(
−ψ2

s,ans,a
2w2

i

)
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Weighted Set: Evaluation Domains

RiverSwim (RS): simple and standard benchmark problem
with six states and two actions [28].

Machine Replacement (MR): a small MDP problem
modeling progressive deterioration of a mechanical device [9].

Population Growth Model (PG): an exponential
population growth model [19] with 50 states.

Inventory Management (IM): a classic inventory
management problem [34] with discrete inventory levels.

Cart-Pole (CP): standard RL benchmark problem to
balance a pole [6].
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Weighted Set: Empirical Evaluation

Normalized Frequentist performance loss

RS MR PG IM CP
Standard 0.8 5.83 5.66 1.05 0.78

Optimized 0.53 1.05 5.55 0.99 0.77

Normalized Bayesian performance loss

RS MR PG IM CP
Standard 0.6 1.56 5.24 0.97 0.77

Optimized 0.25 0.41 1.84 0.90 0.12

Loss is computed w.r.t. nominal model. confidence level is
95%. Lower loss is better.
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Near-optimal Set

Near-optimal Bayesian Ambiguity Sets for
RMDPs
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Near-optimal Bayesian Set: Intuition

Motivation: Half space defined by value function good enough.

Optimal set

s1 s2

s3

+
●

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00

Near-optimal set

Near-optimal set constructed for two possible value functions:
v1 = (0, 0, 1) and v2 = (2, 1, 0).

Approach: Find smallest set intersecting all half-spaces
corresponding to each value function.
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Near-optimal Set: Approach

1 Optimal set for a given v and ζ = 1− δ/(SA):
Ks,a(v) =

{
p ∈ ∆S : pTv ≤ V@RζP?

[
(p?s,a)Tv

]}
2 Near-optimal set: with set V
Ls,a(V) =

{
p ∈ ∆S : ‖p − θs,a(V)‖1 ≤ ψs,a(V)

}
ψs,a(V) = minp∈∆S f (p), θs,a(V) ∈ arg minp∈∆S f (p)

f (p) = maxv∈V minq∈Ks,a(v)‖q − p‖1

3 iteratively expand V and approximate L.

Theorem (Safe return estimates)
Policy π̂k and value function v̂k computed by near-optimal set

in iteration k. The return estimate ρ̃(π̂) = pT
0 v̂k is safe:

PP?
[
pT

0 v̂k ≤ pT
0 v π̂k

P?
∣∣∣ D] ≥ 1− δ.
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Near-optimal Set: Empirical Evaluation

Single-state Bellman update with uninformative Dirichlet prior.

Regret w.r.t optimal policy

20 40 60 80 100
Number of samples

10−1

100

Ca
lcu

la
te

d 
re

tu
rn

 e
rro

r: 


[ξ
]

Mean Transition
Hoeffding
BCI
RSVF

Violation rate

20 40 60 80 100
Number of samples

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n 

vi
ol

at
ed

Mean Transition
Hoeffding
BCI
RSVF

Regret w.r.t optimal policy. Estimates are computed with 95%
confidence level. Lower regret is better.
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Near-optimal Set: Empirical Evaluation

Inventory management

20 40 60 80 100
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Population model
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Regret w.r.t optimal policy. Estimates are computed with 95%
confidence level. Lower regret is better.
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RCMDP

Robust Constrained Markov Decision Processes
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Constrained MDPs

Definition
Defined as a tuple 〈S,A, p, {r0, r1, . . . rn}, {β1, . . . , βn}〉
• Same S, A and fixed transition kernel P like MDPs
• Contains multiple reward functions {r0, r1, . . . rn} and
budgets {β1, . . . , βn}

Objective: Maximize γ-discounted return satisfying
constraints [2]:

max
π∈Π

Eπs

[ ∞∑
t=0

γt r0
(

St ,At
)]

s.t. Eπs

[ ∞∑
t=0

γt ri
(

St ,At
)]
≥ βi , for i = 1, . . . , n
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State of the Art in CMDPs

Dates back to 1960s, first studied by Derman and Klein [11].

CMDP solution methods:
Linear programming based solutions [11, 2],
Lagrangian methods [16, 2]
Surrogate based methods [1, 8],

Sensitivity and robustness in CMDPs:
Sensitivity analysis for LPs with small perturbations (Altman
and Shwartz [3]),
Robustness under small change in constraints (Alex and
Shwartz [33]),
Handling model misspecification in CMDPs (Mankowitz et
al. [21])
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Robust Constrained MDPs

RMDP
maxπ∈Π minp∈P Eπs∼p

[∑∞
t=0 γ

t r0
(
St ,At

)]
CMDP

maxπ∈Π Eπs
[ ∑∞

t=0 γ
t r0

(
St ,At

)]

s.t. Eπs
[ ∑∞

t=0 γ
t r1

(
St ,At

)]
≥ β1

RCMDP
maxπ∈Π minp∈P Eπs

[ ∑∞
t=0 γ

t r0
(
St ,At

)]

s.t. minp∈PEπs
[ ∑∞

t=0 γ
t r1

(
St ,At

)]
≥ β1

RCMDP incorporates both constraints and robustness in
objective
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RCMDP: Approach

Lagrange reformulation of RCMDP objective:
L(πθ, λ) =

∑
ξ∈Ξ pπθ(ξ)

(
g(ξ, r) + λg(ξ, d)

)
− λβ

Find a saddle point (πθ∗, λ∗) of L that satisfies:
L(πθ, λ∗) ≤ L(πθ∗, λ∗) ≤ L(πθ∗, λ), ∀θ ∈ Rk , ∀λ ∈ R+

Use the gradients of L to optimize the RCMDP objective [7]

Theorem (Gradient update formula)
Gradients of L with respect to θ and λ are:
∇θL(πθ, λ) =

∑
ξ p̂πθ(ξ)

(
g(ξ, r) +λg(ξ, d)

)∑T−1
t=0

∇θπθ(at |st )
πθ(at |st )

∇λL(πθ, λ) =
∑
ξ p̂πθ(ξ)g(ξ, d)− β
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RCMDP: Empirical Evaluation

Evaluating policy-gradient method on inventory management.
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Stock-out frequency

Evaluating actor-critic method on cart-pole.
Methods Expected Return Constraint Violation

AC 175.45± 2.99 2.3%
RAC 118.22± 6.07 1.1%

RCAC 123.26± 8.64 0.05%
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RASR

Risk-Averse Soft-Robust Framework
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Risk Measures

Risk: a loss, chance of occuring that loss and the
significance of that loss to the person concerned.

VaRα(X): α−percentile of X.

CVaRα(X): Expectation of worst α−fraction of X.

Entropicα(X): − 1
α log

(
E
[

exp(−αX )
])
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Risk-Averse (RA) and Soft-Robust (SR)

A problem with two possible models

s1

s2

s3

a1s1

s2

s3

a1

0.60.4

0.4

0.6

Model 2Model 1

0.7

0.3

s1 a1

s2

s3

Uncertain Model

Uncertain Transitions
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Risk-Averse (RA) and Soft-Robust (SR)

A problem with two possible models

s1

s2

s3

a1s1

s2

s3

a1

0.60.4

0.4

0.6

Model 2Model 1

0.7

0.3

s1 a1

s2

s3

Uncertain Model

Uncertain Transitions

s1

s2

s3

a1s1

s2

s3

a1

0.60.4

0.4
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0.3

s1 a1
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s3

Risk-Measure

Expectation

Risk Averse (RA)

s1

s2

s3

a1s1

s2

s3

a1

0.60.4

0.4

0.6

Model 2Model 1

0.7

0.3

s1 a1

s2

s3

Expectation

Risk-Measure

Soft Robust (SR)
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Risk-Averse Soft-Robust (RASR) Framework

s1

s2

s3

a1s1

s2

s3

a1

0.60.4

0.4

0.6

Model 2Model 1

0.7

0.3

s1 a1

s2

s3

Entropic Risk Measure

Apply ERM on both model and transition uncertainties

In RASR, both model parameters P̂t and transitions to St+1 are
dynamically uncertain for each time step t.

ψ(π,f )=ραP̂,S,A
[∑T

t=0
γt ·r(St ,At ,St+1) : S0∼p0,St+1∼P̂t (st ,at ),At ∼π(St ),P̂t ∼f

]
.
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RASR: Approach

Value Iteration: RASR Bellman equation.
v̂(s)← maxa∈A ρ

α
Pω∼P̂,s′∼Pω(·|s,a)

[
rs,a,s′ + γv̂(s ′)

]
Actor-Critic: Parameterize policy and optimize with
gradients.

J(πθ) = − 1
α log

(
Eτ∼pθ(τ)

[
exp

(
− αR(τ)

)])

Theorem (RASR gradient formula)
Gradient of J(πθ) with respect to the parameter θ is:

∇θJ(πθ) =
−
∑

τ
pθ(τ)

∑T
t=0
∇θπθ(at |st )
πθ(at |st ) ·exp

(
−α
∑T

t=0 rst ,at

)
α
∑

τ
pθ(τ) exp

(
−αR(τ)

)
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RASR: Empirical Evaluation

Evaluation of RASR-VI policies
RS MR IM

Nominal 16.54 −128.17 60.12
BCR 46.15 −127.53 74.40

RSVF 1.59 −129.03 65.44
RASR-CVaR 43.56 −127.83 69.09

RASR-Entropic 49.99 −120.89 83.50

Evaluation of RASR-AC policies on Cart-Pole problem
General Soft-Robust RASR-CVaR RASR-Entropic
112.11 102.49 127.82 143.6

Return estimates under RASR entropic metric
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Conclusion

Introduced basic RL framework and presented concepts
regarding robust and risk-averse decision making.

Presented four novel contributions in robust and risk-averse
RL:

1 Developed methods to construct weighted ambiguity sets for
RMDPs.

2 Developed methods to construct near-optimal Bayesian
ambiguity sets for RMDPs.

3 Developed robust constrained MDP framework and derived
methods for policy optimization in RCMDPs

4 Developed RASR framework and derived methods for policy
optimization in RASR setting
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Publications

Conferences:
1 Optimizing Percentile Criterion using Robust MDPs. Bahram Behzadian, Reazul Hasan Russel, Marek

Petrik, Chin Pang Ho. Published at AISTATS 2021.

2 Beyond Confidence Interval: Tight Bayesian Ambiguity Sets for Robust MDPs. Reazul Hasan Russel,

Marek Petrik. Published at NeurIPS 2019.

3 Value Directed Exploration in Multi-Armed Bandits with Structured Priors. Bence Cserna, Marek

Petrik, Reazul Hasan Russel, Wheeler Ruml. Published at UAI 2017.

4 Robust Constrained MDP and Stability. Reazul Hasan Russel, Mouhacine Benosman, Jeroen Van Baar,

Radu Corcodel. Under review at NeurIPS 2021

5 Risk-Averse Soft-Robust Reinforcement Learning. In preparation.
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Publications

Workshops:
1 Optimizing Norm-bounded Weighted Ambiguity Sets for Robust MDPs. Reazul Hasan Russel*,

Bahram Behzadian*, Marek Petrik. Presented at NeurIPS 2019 workshop on SRDM.

2 Tight Bayesian Ambiguity Sets for Robust MDPs. Reazul Hasan Russel, Marek Petrik. Presented at

NeurIPS Workshop on Probabilistic Reinforcement Learning and Structured Control, 2018.

3 Robust Exploration with Tight Bayesian Plausibility Sets. Reazul H Russel, Tianyi Gu, Marek Petrik.

RLDM 2018.

4 Robust Constrained-MDPs: Soft-Constrained Robust Policy Optimization under Model Uncertainty.

Reazul Hasan Russel, Mouhacine Benosman, Jeroen Van Baar. NeurIPS workshop on The Challenges

of Real World Reinforcement Learning 2020
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Summary of the work to be done

Soft-robust with entropic risk:
Theoretical understanding: time consistency of entropic risk
measure for our formulation. 3
More empirical evaluation: run more experiments on bigger
and complex domain. 3

Robust constrained MDP:
Exploring and understanding new ideas for further contribution
3
Theoretical understanding and empirical evaluation. 3
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Robustness: Policy Evaluation

True expected return:
0.4 ∗ 100 + 0.6 ∗ 0 = 40
D = s1 → a1 → [5× s2, 5× s3]
Nominal transition: [0.5, 0.5].

Non-robust return: 0.5 ∗ 100 + 0.5 ∗ 0 = 50
Ambiguity budget: ψ = 0.4
Worst-case transition: 0.3, 0.7.
Robust return: 0.3 ∗ 100 + 0.7 ∗ 0 = 30.

Non-robust evaluation: promises $50, but delivers $40.
Robust evaluation: promises at least $30, and delivers

$40.
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Robustness: Policy Evaluation

True expected return: a1 = 40,
a2 = 45
D = {s1 → a1 → [5× s2, 5×
s3], s1 → a2 → [45× s2, 55× s3]}

a1 a2

Nominal: [0.5, 0.5] Nominal: [0.45, 0.55]
Return: 50 Return: 45 Decision: a1

Robust Return: 40 Robust Return: 45 Decision: a2

Robustness makes it possible to pick the best action a2
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RASR: State of the Art in Risk and RL

References
Uncertainty Types Risk Measures

RA SR Variance CVaR Entropic

Lobo et al. [20] 7 3 7 3 7

Nass et al. [22] 3 7 7 7 3

Fei et al. [15] 3 7 7 7 3

Eriksson et al. [14] 7 3 7 3 3

Hiraoka et al.[17] 7 3 7 3 7

Prashanth et al. [24] 3 7 3 7 7

Chow et al. [7] 3 7 7 3 7

Tamar et al.[30] 3 7 7 3 7

RASR 3 3 7 7 3
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RASR: Empirical Evaluation

Methods RS MR IM

Nominal
Mean 221.90 −12.46 226.47

RASR 16.54 −128.17 60.12

BCR
Mean 107.77 −15.68 208.73

RASR 46.15 −127.53 74.40

RSVF
Mean 220.81 −14.14 216.54

RASR 1.59 −129.03 65.44

RASR-CVaR
Mean 132.92 −14.08 216.52

RASR 43.56 −127.83 69.09

RASR-Entropic
Mean 49.99 −24.11 118.54

RASR 49.99 −120.89 83.50

R.H. Russel LEARNING TO ACT WITH ROBUSTNESS 51/69



Basics of RL

Motivation and
Outline

Robust MDPs

Contributions
Weighted Set

Near-optimal Set

RCMDPs

RASR

Conclusion

References

Pest Control as MDP

States: Pest population: [0, 50]

Actions:
0 No pesticide

1-4 Pesticides P1, P2, P3, P4 with increasing effectiveness

Transition probabilities: Pest population dynamics

Reward:
1 Crop yield minus pest damage
2 Spraying cost: P4 more expensive than P1
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Non-robust Solution

Return: $8, 820
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Robust Solution

Return: $7, 125
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SA-Rectangular Ambiguity

Nature is constrained for each state and action separately e.g.

[23]

Sets are rectangles over s and a:

6

-

6

-P[
s 3
|s 2
,a

1]

P[s3|s1, a1]
P[

s 3
|s 1
,a

2]
P[s3|s1, a1]
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Frequentist Ambiguity Set

For p̄s,a = EP? [p?s,a | D] with prob. 1− δ (using Hoeffding’s Ineq. see e.g.

[31, 4, 26]):

PH
s,a =

{
p ∈ ∆S : ‖p − p̄s,a‖1 ≤

√
2

ns,a
log SA2S

δ

}

+●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
p1

p 2

Few samples −→ large ambiguity set −→ Very conservative
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Bayesian Ambiguity Set

Use posterior distribution to optimize for the smallest
ambiguity set.

PB
s,a =

{
p ∈ ∆S : ‖p − p̄s,a‖1 ≤ ψB

s,a

}
, p̄s,a = EP? [p?s,a | D] .

+●
●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
p1

p 2

Hoeffding (green) vs Bayesian(blue), uniform Dirichlet Prior, 3
states

Tighter than frequentist but require prior and omputationally
demanding
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Idea 1: Weighted Ambiguity Sets

Optimize ambiguity sets with problem specific weights.
v = (0, 0, 1)

s1 s2

s3

●●

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00

Green: L1-norm bounded set:
Ps,a =

{
ppp ∈ ∆S : ‖ppp − p̄pps,a‖1 ≤ ψs,a

}
Orange: Weighted L1-norm bounded:

Ps,a =
{

ppp ∈ ∆S : ‖ppp − p̄pps,a‖1,w ≤ ψs,a
}
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Idea 1: Weighted Ambiguity Sets

Optimizing weights:
Step 1: Estimate a value function v̂
Step 2: Lower bound the robust value:

min
ppp∈∆S

{
rs,a + γ pppTv̂vv : ‖ppp − p̄pp‖1,www ≤ ψ

}
Step 3: Compute weights w maximizing the lower bound:

max
www∈RS

++

{
p̄ppTzzz − ψ‖zzz − λ̄111‖∞, 1

www
:

S∑
i=1

wi
2 = 1

}

Step 4: Use w to compute weighted sets.
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Idea 1: Optimizing Weights

Define zzz = rs,a1 + γ v̂vv and q(zzz) with L∞ norm for some
www > 0 as: q(zzz) = minppp∈∆S

{
pppTzzz : ‖ppp − p̄pp‖1,www ≤ ψ

}
.

Theorem
q(zzz) can be lower-bounded as follows:

q(zzz) ≥ p̄ppTzzz − ψ‖zzz − λ111‖∞, 1
www

for any λ ∈ R. Moreover, when www = 1, the bound is tightest
when λ = (maxi zi + mini zi )/2 and the bound turns to
q(zzz) ≥ p̄ppTzzz − ψ

2 ‖zzz‖s with ‖·‖s representing the span
semi-norm.

We choose www that will maximize the lower bound on q(zzz):

max
www∈RS

>0

{
p̄ppTzzz − ψ‖zzz − λ̄111‖∞, 1

www
:

S∑
i=1

w2
i = 1

}
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Idea 2: Near-optimal Bayesian Ambiguity Sets

Value-function driven near-optimal ambiguity sets

s1 s2

s3

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00

Red: Optimal set for for a known
value function v = [0, 0, 1]

Blue: Optimal set for all possible
value functions.

Near-optimal ambiguity sets
constructed for two possible

value functions: v1 = (0, 0, 1)
and v2 = (2, 1, 0)
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Idea 2: Near-optimal Bayesian Ambiguity Sets

Value-function driven near-optimal ambiguity sets

s1 s2

s3

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00

Red: Optimal set for for a known
value function v = [0, 0, 1]

Blue: Optimal set for all possible
value functions.

s1 s2

s3
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●
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Near-optimal ambiguity sets
constructed for two possible

value functions: v1 = (0, 0, 1)
and v2 = (2, 1, 0)
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Idea 2: Near-optimal Bayesian Ambiguity Sets

s1 s2

s3

+
●

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00

Near-optimal sets:
Step 1: Find the half-space for each value function:

Ks,a(v) =
{

p ∈ ∆S : pTv ≤ V@RζP?
[
(p?s,a)Tv

]}
Step 2: Find minimal set intersecting each half-space.
Step 3: Compute robust solution and iterate.
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Near-optimal Bayesian Ambiguity Sets

• Optimal ambiguity set for a known value function v :

Ks,a(v) =
{

p ∈ ∆S : pT v ≤ V@RζP?
[
(p?s,a)T v

]}
,

• Approximation of optimal ambiguity set for a set of possible
value functions:

Ls,a(V) =
{

p ∈ ∆S : ‖p − θs,a(V)‖1 ≤ ψs,a(V)
}
,

ψs,a(V) = min
p∈∆S

f (p), θs,a(V) ∈ arg min
p∈∆S

f (p),

f (p) = max
v∈V

min
q∈Ks,a(v)

‖q − p‖1

Theorem
Suppose that the algorithm terminates with a policy π̂k and a
value function v̂k in the iteration k. Then, the return estimate
ρ̃(π̂) = pT

0 v̂k is safe: PP?
[
pT

0 v̂k ≤ pT
0 v π̂k

P?
∣∣∣ D] ≥ 1− δ.

R.H. Russel LEARNING TO ACT WITH ROBUSTNESS 63/69



Basics of RL

Motivation and
Outline

Robust MDPs

Contributions
Weighted Set

Near-optimal Set

RCMDPs

RASR

Conclusion

References

Soft-Robust Methods

Estimate pos-
sible models

consistent with D

Soft-Robust
Optimize policy

w.r.t a risk metric

Related Works:
[10] proposed soft-robust policy-gradient and actor-critic
methods constrained by a fixed ambiguity set.
[13] propose entropic and CV@R risk constrained policy
gradient in Bayesian setting.
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Idea 3: Soft-Robustness with Entropic Risk

Objective:

max
θ

EM
[
Eξ
[
gθ(ξ)

]]
s.t. − 1

α
log
(
EM

[
e−αEξ[gθ(ξ)]]) ≥ β

Derive gradient update rule:

∇θL(θ, λ) =
∑
M

P(M)
∑

ξ:Pθ,M(ξ)6=0
g(ξ)Pθ,M(ξ)

(
1−

αλe
−α
∑

ξ:Pθ,M(ξ)6=0 Pθ,M(ξ)g(ξ)) T−1∑
k=0

∇θπθ(ak |sk)
πθ(ak |sk)

∇λL(θ, λ) =
∑
M

P(M)e−α
∑

ξ:Pθ(ξ) 6=0 Pθ,M(ξ)g(ξ) − e−αβ
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Idea 3: Empirical Evaluation

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Asset 1
Asset 2
Asset 3

Asset 1: Standard normal.

Asset 2: Normal with µ = 4
and σ = 6.

Asset 3: Pareto distribution
with shape a = 1.5, scale
m = 1 and pdf p(x) = ama

xa+1 .
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Convergence Analysis

Corollary
When Sφ(X ) = ραent(X ) for some α ∈ (0, 1], then we have:

P(|ρ̂αent(X1, . . . ,XN)− ραent(X )| ≥ ε) ≤ 2e−2α2ε2N

Theorem
Under assumptions (A1) - (A7) stated in Appendix of the
paper, the sequence of parameter updates of the policy
gradient algorithm converges almost surely to a locally optimal
policy θ? as k →∞.

Theorem
Under assumptions (A1) - (A7) stated in Appendix of the
paper, the sequence of parameter updates of actor-critic
Algorithm converges almost surely to a locally optimal policy
θ? as k →∞.
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Robust Constrained MDP

Constrained MDPs: MDPs with multiple reward
functions [2].
Robust CMDPs: Incorporate robustness into CMDPs.

Related Works:
[12] Proposes methods to find robust optimal policies with
safety-threshold constraints.
[21] Proposes methods to optimize policy robust to
constrained model misspecification.
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Idea 4: Robust Constrained Policy Optimization

Objective:

max
π∈Π

min
p∈P

Ep

[ ∞∑
t=0

γtc(st , at)
]

s.t. min
p∈P

Ep

[ ∞∑
t=0

γtd(st , at)
]
≤ d0

Formulate Lagrange:

max
λ≥0

min
θ

(
L(θ, λ) = v̂πP(s) + λ

(
ûπP(s)− d0

))
Derive gradient update rule:

∇θL(θ, λ) =
∑
ξ

p̂θ(ξ)
(

g(ξ) + λh(ξ)
) T−1∑

t=0

∇θπθ(at |st)
πθ(at |st)

∇λL(θ, λ) =
∑
ξ

p̂θu(ξ)h(ξ)− d0
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